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Program Definition 

Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in 

energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical 

processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable 

and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, 

separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties 

compared to conventional molecular solvents, and they provide a new and unusual environment to test our 

theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence 

physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby 

affect the courses of chemical reactions and product distributions. 

Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be 

significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary 

steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their 

effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate 

pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of applications listed 

above. Very early in our radiolysis studies it became evident that slow solvation dynamics of the excess electron in 

ILs (which vary over a wide viscosity range) increases the importance of pre-solvated electron reactivity and 

consequently alters product distributions. Parallel studies of IL solvation phenomena using coumarin-153 dynamic 

Stokes shifts and polarization anisotropy decay rates are done to compare with electron solvation studies and to 

evaluate the influence of ILs on charge transport processes. 

Methods. Picosecond pulse radiolysis studies at BNL’s Laser-Electron Accelerator Facility (LEAF) are used to 

identify reactive species in ionic liquids and measure their solvation and reaction rates. We and our collaborators (R. 

Engel (Queens College, CUNY) and S. Lall-Ramnarine, (Queensborough CC, CUNY)) develop and characterize 

new ionic liquids specifically designed for our radiolysis and solvation dynamics studies. IL solvation and rotational 

dynamics are measured by TCSPC and fluorescence upconversion measurements in the laboratory of E. W. Castner 

at Rutgers Univ. Investigations of radical species in irradiated ILs are carried out at ANL by I. Shkrob and S. 

Chemerisov using EPR spectroscopy. Diffusion rates are obtained by PGSE NMR in S. Greenbaum’s lab at Hunter 

College, CUNY and S. Chung’s lab at William Patterson U. Professor Mark Kobrak of CUNY Brooklyn College 

performs molecular dynamics simulations of solvation processes. A collaboration with M. Dietz and coworkers at 

ANL is centered around the properties and radiolytic behavior of ionic liquids for nuclear separations. 

Collaborations with C. Reed (UC Riverside), D. Gabel (U. Bremen) and J. Davis (U. South Alabama) are aimed at 

characterizing the radiolytic and other properties of borated ionic liquids, which could be used to make fissile 

material separations processes inherently safe from criticality accidents. 

 

Recent Progress 

Pre-solvated electron reactivity and its relation to solvation dynamics in ILs. In the course of kinetic 

measurements on reactions of electrons with various scavengers it was found that relatively low scavenger 

concentrations substantially reduced the initial yield of solvated electrons. Direct scavenging of pre-solvated (“dry”) 

electrons competes effectively with the slower electron solvation processes in ionic liquids.  For example, a pyrene 

concentration of only 63 mM reduces the solvated electron yield to 37% of the scavenger-free value. This finding 

has major implications for processing of radioactive materials, where seemingly innocuous quantities of solutes may 

scavenge electrons very effectively. Conversely, dry electron scavenging facilitates the use of pulse radiolysis in 

electron transfer studies by providing a way to circumvent diffusion-limited precursor formation rates. 

Measurements of excess electron solvation processes and emission dynamics (Stokes shift and polarization 
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anisotropy decay) of solvatochromic coumarin-153 show that the reorganization dynamics of ionic liquids occur on 

much longer timescales (nanoseconds) than in conventional polar solvents (picoseconds). The slow solvation 

dynamics would also be expected to significantly alter transition state dynamics and provide a potential means to 

control product distribution. 

To look at electron solvation with higher time resolution, we used low-viscosity pyrrolidinium salts and 

developed novel ionic liquids with even lower melting points and viscosities, based on ether-substituted 

pyrrolidinium cations. These liquids have RT viscosities low enough (65-95 cP) to flow through the picosecond 

pulse-probe transient absorption system at LEAF, which requires sample exchange to avoid cumulative radiation 

effects. Consequently, the electron solvation process was directly observed in three ILs by monitoring the decay of 

pre-solvated electrons at multiple wavelengths (to yield a solvated electron spectrum similar to the blue curve 

above). In N-methyl,N-butyl-pyrrolidinium NTf2
-
 the electron solvation lifetime < solv> is 260 ps, while < solv> 

obtained from coumarin 153 Stokes shift measurements is 346 ps (see next section). 

Even slower solvation processes were observed in pulse radiolysis studies of ionic liquids containing ether-, 

alcohol- and alkyl-functionalized quaternary ammonium dications (CH3)2(R)N
+
(CH2)nN

+
(R)(CH3)2 (NTf2

-
)2, where 

R = (CH2)3OH, (CH2)2OCH2CH3, or (CH2)3CH3 and n = 3–8. Spectra on nanosecond timescales revealed that 

solvation of the excess electron is particularly slow in the case of the alcohol-derivatized ionic liquids. The blue shift 

of the electron spectrum to the customary 650 nm peak takes 25-40 nanoseconds at RT (viscosities ~4500-6800 cP). 

Comparison with the ~1 ns electron solvation time observed in similarly viscous 1,2,6-trihydroxyhexane (2500 cP) 

reveals the hindering effect of the ionic liquid lattice on hydroxypropyl side chain reorientation [1]. 

Solvation dynamics in ILs using fluorescent probes. The solvation and reorientational dynamics for a series of 

four ionic liquids were probed as functions of temperature (278-353 K) using coumarin 153 (C153). The ionic 

liquids are comprised of saturated organic cations (methyltributylammonium, hexyltributylammonium, 

methylbutylpyrrolidinium, and methyl(ethoxyethyl)pyrrolidinium) paired with a common anion, 

bis(trifluoromethylsulfonyl)imide. The observed solvation dynamics and fluorescence depolarization dynamics 

occur over a broad range of time scales that can only be adequately fit by functions including three or more 

exponential components. Stretched exponential distributions could not adequately fit our data. For both the solvation 

dynamics and the probe reorientational dynamics, the observed temperature dependences of the average relaxation 

times are well fit by Vogel-Tammann-Fulcher laws. To correlate the observed microscopic dynamics with 

macroscopic physical properties, temperature-dependent viscosities were also measured. Differential scanning 

calorimetry was used to study the thermodynamics of the phase transitions from the liquid to supercooled liquid to 

glassy states. For the two tetraalkylammonium liquids, the observed melting transitions occur near 300 K, so we are 

able to study the dynamics in a clearly supercooled regime. [10] (In collaboration with E. W. Castner, Rutgers 

University.) 

EPR studies of radical species in ILs. Since our standard technique of transient optical detection cannot detect 

many important intermediates that lack strong absorption features, particularly hole-derived species, we have begun 

to use EPR to identify ionization products in ILs [11]. Radical intermediates were generated by radiolysis or 

photoionization of low-temperature ionic liquid glasses composed of ammonium, phosphonium, pyrrolidinium, and 

imidazolium cations and bis(triflyl)amide, dicyanamide, and bis(oxalato)borate anions. Large yields of terminal and 

penultimate C-centered radicals are observed in the aliphatic chains of the phosphonium, ammonium and 

pyrrolidinium cations, but not for imidazolium cation (where the ring is the predominant site of oxidation). This 

pattern is indicative of efficient deprotonation of a hole trapped on the parent cation (the radical dication) that 

competes with rapid electron transfer from a nearby anion. This charge transfer leads to the formation of stable N- or 

O-centered radicals; the dissociation of parent anions is a minor pathway. Production of •CF3 from (CF3SO2)2N
-
 

evidently proceeds primarily through an excited state of the anion rather than via ionization. 

Radiolysis of simulated IL-based nuclear extraction systems. Addition of 10-40 wt% of trialkylphosphate (a 

common agent for nuclear separations) has relatively little effect on the fragmentation of the ILs. The yield of the 

alkyl radical fragment generated by dissociative electron attachment to the trialkylphosphate is < 4% of the yield of 

the radical fragments derived from the IL solvent. The currently used hydrocarbon/tributylphosphate extraction 

systems involve a highly resistant, structurally simple solvent (like kerosene) that efficiently transfers charge
 
and 

energy
 
to the functional solute (tributylphosphate), resulting in the fragmentation of the latter and degradation of 

extraction efficiency. The results suggest a different paradigm for radiation protection: a solvent in which the 
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damage transfer is reversed. Such a solvent actively protects the functional solute in a sacrificial way, but overall 

radiolytic damage is still kept to a low level by the radiolytic properties of the solvent [11] (in collaboration with I. 

Shkrob and S. Chemerisov, ANL). 

Radiolysis of borated ionic liquids. A group from Los Alamos calculated that processing plutonium in boron-

containing ionic liquids could substantially reduce the risk of nuclear criticality accidents. Subsequently we 

investigated the radiation chemistry of ionic liquids prepared from carborane (CB
-
) and bis(oxalato)borate (BOB

-
) 

anions. Experiments in liquids derived from the CB11H6Br6
-
 and BOB

-
 anions and studies of the same anions diluted 

in NTf2
-
 ionic liquids indicate the major radiation stability concern may be the reaction of the solvated electron with 

the CB and BOB anions, a problem that could be addressed by including imidazolium or pyridinium cations in the 

ionic liquid mixtures. By contrast, trialkylammonioborate anions ([R3N-B12H11]
-
) form low-melting salts with many 

cations but do not react with solvated electrons (with D. Gabel, Bremen, submitted). 

 

Future Plans 

Electron solvation and reactivity. Pre-solvated electron scavenging mechanisms will be explored by studying 

the competition between the electron solvation and attachment processes in ILs. Electron solvation dynamics in 

several families of low-viscosity ILs will be measured by pulse-probe radiolysis. Subsequently, scavengers will be 

added to measure the kinetics of pre-solvated electron capture. It is well known from work in molecular solvents that 

many scavengers, for example SeO4
2-

, have widely different reactivity profiles towards pre-solvated and solvated 

electrons. We have begun quantitative measurement of the scavenging profiles of benzophenone, SeO4
2-

, NO3
-
, and 

Cd
2+

 using the ultrafast single-shot detection system at LEAF, through which we hope to explain such conundrums 

mechanistically. C-153 solvation dynamics results will be compared with electron and benzophenone anion 

solvation measurements. 

Charge transport in ionic liquids. ILs have proved to posess valuable characteristics for solar energy 

photoconversion systems such as the Grätzel cell. Pulse radiolysis and flash photolysis methods will be used to 

study how ionic liquids affect charge-transport reactions in bridged electron donor-acceptor systems. Focus areas 

will be the combined effects of ionic solvation and slow solvent relaxation on the energy landscape of charge 

transport, including specific counterion effects depending on the ionic liquid, and the influence of the lattice-like 

structure of ionic liquids on the distance dependence of electron transport reactions. 

Non-classical diffusion in ionic liquids. Ionic liquids show unusual solute diffusion behavior on the basis of 

solute charge and size, which will be explored through reaction kinetics and high-pressure pulsed-gradient spin echo 

NMR studies of diffusion rates of charged and neutral species. This information is important for modeling geminate 

recombination kinetics to understand why radiolytic damage accumulates slower in ionic liquids than many other 

materials. 

EXAFS studies of structure and reaction dynamics in ionic liquids. In collaboration with R. Crowell and 

coworkers, we will use Br EXAFS to study the structures of neat bromide ionic liquids and the effect of solutes, and 

we will use photoionization coupled with time-resolved EXAFS to probe the solvation dynamics of Br0
 atoms in ILs 

and the effect of the ionic liquid environment on the Br
-
 + Br

0
  Br2

- 
reaction. The results can be applied to 

understanding related iodide systems of interest in solar photoconversion. 
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